Files
backend/scripts/benchmark_scan_intake.ts

368 lines
13 KiB
TypeScript
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
/**
* Scan Intake Benchmark Script
*
* Measures TrackScan creation performance before and after each optimisation phase.
* Run against a live dev server: bun run dev
*
* Usage:
* bun run benchmark
* bun scripts/benchmark_scan_intake.ts --base http://localhost:4010
*
* What it measures:
* 1. Single sequential scans — baseline latency per request (p50/p95/p99/max)
* 2. Parallel scans (10 stations) — simulates 10 concurrent stations each submitting
* one scan at a time at the expected event rate
* (~1 scan/3s per station = ~3.3 scans/s total)
*
* The script self-provisions all required data (org, runners, cards, track, stations)
* and cleans up after itself. It authenticates via the station token, matching the
* real production auth path exactly.
*
* Output is printed to stdout in a copy-paste-friendly table format so results can
* be compared across phases.
*/
import axios, { AxiosInstance } from 'axios';
// ---------------------------------------------------------------------------
// Config
// ---------------------------------------------------------------------------
const BASE = (() => {
const idx = process.argv.indexOf('--base');
return idx !== -1 ? process.argv[idx + 1] : 'http://localhost:4010';
})();
const API = `${BASE}/api`;
// Number of simulated scan stations
const STATION_COUNT = 10;
// Sequential benchmark: total number of scans to send, one at a time
const SEQUENTIAL_SCAN_COUNT = 50;
// Parallel benchmark: number of rounds. Each round fires STATION_COUNT scans concurrently.
// 20 rounds × 10 stations = 200 total scans, matching the expected event throughput pattern.
const PARALLEL_ROUNDS = 20;
// Minimum lap time on the test track (seconds). Set low so most scans are valid.
// The benchmark measures submission speed, not business logic.
const TRACK_MINIMUM_LAP_TIME = 1;
// Track distance (metres)
const TRACK_DISTANCE = 400;
// ---------------------------------------------------------------------------
// Types
// ---------------------------------------------------------------------------
interface StationHandle {
id: number;
key: string; // cleartext token, used as Bearer token
cardCode: number; // EAN-13 barcode of the card assigned to this station's runner
axiosInstance: AxiosInstance;
}
interface Percentiles {
p50: number;
p95: number;
p99: number;
max: number;
min: number;
mean: number;
}
interface BenchmarkResult {
label: string;
totalScans: number;
totalTimeMs: number;
scansPerSecond: number;
latencies: Percentiles;
errors: number;
}
// ---------------------------------------------------------------------------
// HTTP helpers
// ---------------------------------------------------------------------------
const adminClient = axios.create({
baseURL: API,
validateStatus: () => true,
});
async function adminLogin(): Promise<string> {
const res = await adminClient.post('/auth/login', { username: 'demo', password: 'demo' });
if (res.status !== 200) {
throw new Error(`Login failed: ${res.status} ${JSON.stringify(res.data)}`);
}
return res.data.access_token;
}
function authedClient(token: string): AxiosInstance {
return axios.create({
baseURL: API,
validateStatus: () => true,
headers: { authorization: `Bearer ${token}` },
});
}
// ---------------------------------------------------------------------------
// Data provisioning
// ---------------------------------------------------------------------------
async function provision(adminToken: string): Promise<{
stations: StationHandle[];
trackId: number;
orgId: number;
cleanup: () => Promise<void>;
}> {
const client = authedClient(adminToken);
const createdIds: { type: string; id: number }[] = [];
const create = async (path: string, body: object): Promise<any> => {
const res = await client.post(path, body);
if (res.status !== 200) {
throw new Error(`POST ${path} failed: ${res.status} ${JSON.stringify(res.data)}`);
}
return res.data;
};
process.stdout.write('Provisioning test data... ');
// Organisation
const org = await create('/organizations', { name: 'benchmark-org' });
createdIds.push({ type: 'organizations', id: org.id });
// Track with a low minimumLapTime so re-scans within the benchmark are mostly valid
const track = await create('/tracks', {
name: 'benchmark-track',
distance: TRACK_DISTANCE,
minimumLapTime: TRACK_MINIMUM_LAP_TIME,
});
createdIds.push({ type: 'tracks', id: track.id });
// One runner + card + station per simulated scan station
const stations: StationHandle[] = [];
for (let i = 0; i < STATION_COUNT; i++) {
const runner = await create('/runners', {
firstname: `Bench`,
lastname: `Runner${i}`,
group: org.id,
});
createdIds.push({ type: 'runners', id: runner.id });
const card = await create('/cards', { runner: runner.id });
createdIds.push({ type: 'cards', id: card.id });
const station = await create('/stations', {
track: track.id,
description: `bench-station-${i}`,
});
createdIds.push({ type: 'stations', id: station.id });
stations.push({
id: station.id,
key: station.key,
cardCode: card.id, // the test spec uses card.id directly as the barcode value
axiosInstance: axios.create({
baseURL: API,
validateStatus: () => true,
headers: { authorization: `Bearer ${station.key}` },
}),
});
}
console.log(`done. (${STATION_COUNT} stations, ${STATION_COUNT} runners, ${STATION_COUNT} cards)`);
const cleanup = async () => {
process.stdout.write('Cleaning up test data... ');
// Delete in reverse-dependency order
for (const item of [...createdIds].reverse()) {
await client.delete(`/${item.type}/${item.id}?force=true`);
}
console.log('done.');
};
return { stations, trackId: track.id, orgId: org.id, cleanup };
}
// ---------------------------------------------------------------------------
// Single scan submission (returns latency in ms)
// ---------------------------------------------------------------------------
async function submitScan(station: StationHandle): Promise<{ latencyMs: number; ok: boolean }> {
const start = performance.now();
const res = await station.axiosInstance.post('/scans/trackscans', {
card: station.cardCode,
station: station.id,
});
const latencyMs = performance.now() - start;
const ok = res.status === 200;
return { latencyMs, ok };
}
// ---------------------------------------------------------------------------
// Statistics
// ---------------------------------------------------------------------------
function percentiles(latencies: number[]): Percentiles {
const sorted = [...latencies].sort((a, b) => a - b);
const at = (pct: number) => sorted[Math.floor((pct / 100) * sorted.length)] ?? sorted[sorted.length - 1];
const mean = sorted.reduce((s, v) => s + v, 0) / sorted.length;
return {
p50: Math.round(at(50)),
p95: Math.round(at(95)),
p99: Math.round(at(99)),
max: Math.round(sorted[sorted.length - 1]),
min: Math.round(sorted[0]),
mean: Math.round(mean),
};
}
// ---------------------------------------------------------------------------
// Benchmark 1 — Sequential (single station, one scan at a time)
// ---------------------------------------------------------------------------
async function benchmarkSequential(station: StationHandle): Promise<BenchmarkResult> {
const latencies: number[] = [];
let errors = 0;
process.stdout.write(` Running ${SEQUENTIAL_SCAN_COUNT} sequential scans`);
const wallStart = performance.now();
for (let i = 0; i < SEQUENTIAL_SCAN_COUNT; i++) {
const { latencyMs, ok } = await submitScan(station);
latencies.push(latencyMs);
if (!ok) errors++;
if ((i + 1) % 10 === 0) process.stdout.write('.');
}
const totalTimeMs = performance.now() - wallStart;
console.log(' done.');
return {
label: 'Sequential (1 station)',
totalScans: SEQUENTIAL_SCAN_COUNT,
totalTimeMs,
scansPerSecond: (SEQUENTIAL_SCAN_COUNT / totalTimeMs) * 1000,
latencies: percentiles(latencies),
errors,
};
}
// ---------------------------------------------------------------------------
// Benchmark 2 — Parallel (10 stations, concurrent rounds)
//
// Models the real event scenario: every ~3 seconds each station submits one scan.
// We don't actually sleep between rounds — we fire each round as fast as the
// previous one completes, which gives us the worst-case sustained throughput
// (all stations submitting at maximum rate simultaneously).
// ---------------------------------------------------------------------------
async function benchmarkParallel(stations: StationHandle[]): Promise<BenchmarkResult> {
const latencies: number[] = [];
let errors = 0;
process.stdout.write(` Running ${PARALLEL_ROUNDS} rounds × ${STATION_COUNT} concurrent stations`);
const wallStart = performance.now();
for (let round = 0; round < PARALLEL_ROUNDS; round++) {
const results = await Promise.all(stations.map(s => submitScan(s)));
for (const { latencyMs, ok } of results) {
latencies.push(latencyMs);
if (!ok) errors++;
}
if ((round + 1) % 4 === 0) process.stdout.write('.');
}
const totalTimeMs = performance.now() - wallStart;
const totalScans = PARALLEL_ROUNDS * STATION_COUNT;
console.log(' done.');
return {
label: `Parallel (${STATION_COUNT} stations concurrent)`,
totalScans,
totalTimeMs,
scansPerSecond: (totalScans / totalTimeMs) * 1000,
latencies: percentiles(latencies),
errors,
};
}
// ---------------------------------------------------------------------------
// Output formatting
// ---------------------------------------------------------------------------
function printResult(result: BenchmarkResult) {
const { label, totalScans, totalTimeMs, scansPerSecond, latencies, errors } = result;
console.log(`\n ${label}`);
console.log(` ${'─'.repeat(52)}`);
console.log(` Total scans : ${totalScans}`);
console.log(` Total time : ${totalTimeMs.toFixed(0)} ms`);
console.log(` Throughput : ${scansPerSecond.toFixed(2)} scans/sec`);
console.log(` Latency min : ${latencies.min} ms`);
console.log(` Latency mean : ${latencies.mean} ms`);
console.log(` Latency p50 : ${latencies.p50} ms`);
console.log(` Latency p95 : ${latencies.p95} ms`);
console.log(` Latency p99 : ${latencies.p99} ms`);
console.log(` Latency max : ${latencies.max} ms`);
console.log(` Errors : ${errors}`);
}
function printSummary(results: BenchmarkResult[]) {
const now = new Date().toISOString();
console.log('\n');
console.log('═'.repeat(60));
console.log(` SCAN INTAKE BENCHMARK RESULTS — ${now}`);
console.log(` Server: ${BASE}`);
console.log('═'.repeat(60));
for (const r of results) {
printResult(r);
}
console.log('\n' + '═'.repeat(60));
console.log(' Copy the block above to compare across phases.');
console.log('═'.repeat(60) + '\n');
}
// ---------------------------------------------------------------------------
// Entry point
// ---------------------------------------------------------------------------
async function main() {
console.log(`\nScan Intake Benchmark — target: ${BASE}\n`);
let adminToken: string;
try {
adminToken = await adminLogin();
} catch (err) {
console.error(`Could not authenticate. Is the server running at ${BASE}?\n`, err.message);
process.exit(1);
}
const { stations, cleanup } = await provision(adminToken);
const results: BenchmarkResult[] = [];
try {
console.log('\nBenchmark 1 — Sequential');
results.push(await benchmarkSequential(stations[0]));
// Brief pause between benchmarks so the sequential scans don't skew
// the parallel benchmark's first-scan latency (minimumLapTime window)
await new Promise(r => setTimeout(r, (TRACK_MINIMUM_LAP_TIME + 1) * 1000));
console.log('\nBenchmark 2 — Parallel');
results.push(await benchmarkParallel(stations));
} finally {
await cleanup();
}
printSummary(results);
}
main().catch(err => {
console.error('Benchmark failed:', err);
process.exit(1);
});