frontend/.pnpm-store/v3/files/70/ea9a4218e5fdfd034cb41bcc30450597cb4a5b6ea9e4026c62c0017edb165487372a038a13810f3d4037be71d8328a9327aebe75b6ac186cd63e02c5973e95

223 lines
10 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.scryptAsync = exports.scrypt = void 0;
const _assert_js_1 = require("./_assert.js");
const sha256_js_1 = require("./sha256.js");
const pbkdf2_js_1 = require("./pbkdf2.js");
const utils_js_1 = require("./utils.js");
// RFC 7914 Scrypt KDF
// Left rotate for uint32
const rotl = (a, b) => (a << b) | (a >>> (32 - b));
// The main Scrypt loop: uses Salsa extensively.
// Six versions of the function were tried, this is the fastest one.
// prettier-ignore
function XorAndSalsa(prev, pi, input, ii, out, oi) {
// Based on https://cr.yp.to/salsa20.html
// Xor blocks
let y00 = prev[pi++] ^ input[ii++], y01 = prev[pi++] ^ input[ii++];
let y02 = prev[pi++] ^ input[ii++], y03 = prev[pi++] ^ input[ii++];
let y04 = prev[pi++] ^ input[ii++], y05 = prev[pi++] ^ input[ii++];
let y06 = prev[pi++] ^ input[ii++], y07 = prev[pi++] ^ input[ii++];
let y08 = prev[pi++] ^ input[ii++], y09 = prev[pi++] ^ input[ii++];
let y10 = prev[pi++] ^ input[ii++], y11 = prev[pi++] ^ input[ii++];
let y12 = prev[pi++] ^ input[ii++], y13 = prev[pi++] ^ input[ii++];
let y14 = prev[pi++] ^ input[ii++], y15 = prev[pi++] ^ input[ii++];
// Save state to temporary variables (salsa)
let x00 = y00, x01 = y01, x02 = y02, x03 = y03, x04 = y04, x05 = y05, x06 = y06, x07 = y07, x08 = y08, x09 = y09, x10 = y10, x11 = y11, x12 = y12, x13 = y13, x14 = y14, x15 = y15;
// Main loop (salsa)
for (let i = 0; i < 8; i += 2) {
x04 ^= rotl(x00 + x12 | 0, 7);
x08 ^= rotl(x04 + x00 | 0, 9);
x12 ^= rotl(x08 + x04 | 0, 13);
x00 ^= rotl(x12 + x08 | 0, 18);
x09 ^= rotl(x05 + x01 | 0, 7);
x13 ^= rotl(x09 + x05 | 0, 9);
x01 ^= rotl(x13 + x09 | 0, 13);
x05 ^= rotl(x01 + x13 | 0, 18);
x14 ^= rotl(x10 + x06 | 0, 7);
x02 ^= rotl(x14 + x10 | 0, 9);
x06 ^= rotl(x02 + x14 | 0, 13);
x10 ^= rotl(x06 + x02 | 0, 18);
x03 ^= rotl(x15 + x11 | 0, 7);
x07 ^= rotl(x03 + x15 | 0, 9);
x11 ^= rotl(x07 + x03 | 0, 13);
x15 ^= rotl(x11 + x07 | 0, 18);
x01 ^= rotl(x00 + x03 | 0, 7);
x02 ^= rotl(x01 + x00 | 0, 9);
x03 ^= rotl(x02 + x01 | 0, 13);
x00 ^= rotl(x03 + x02 | 0, 18);
x06 ^= rotl(x05 + x04 | 0, 7);
x07 ^= rotl(x06 + x05 | 0, 9);
x04 ^= rotl(x07 + x06 | 0, 13);
x05 ^= rotl(x04 + x07 | 0, 18);
x11 ^= rotl(x10 + x09 | 0, 7);
x08 ^= rotl(x11 + x10 | 0, 9);
x09 ^= rotl(x08 + x11 | 0, 13);
x10 ^= rotl(x09 + x08 | 0, 18);
x12 ^= rotl(x15 + x14 | 0, 7);
x13 ^= rotl(x12 + x15 | 0, 9);
x14 ^= rotl(x13 + x12 | 0, 13);
x15 ^= rotl(x14 + x13 | 0, 18);
}
// Write output (salsa)
out[oi++] = (y00 + x00) | 0;
out[oi++] = (y01 + x01) | 0;
out[oi++] = (y02 + x02) | 0;
out[oi++] = (y03 + x03) | 0;
out[oi++] = (y04 + x04) | 0;
out[oi++] = (y05 + x05) | 0;
out[oi++] = (y06 + x06) | 0;
out[oi++] = (y07 + x07) | 0;
out[oi++] = (y08 + x08) | 0;
out[oi++] = (y09 + x09) | 0;
out[oi++] = (y10 + x10) | 0;
out[oi++] = (y11 + x11) | 0;
out[oi++] = (y12 + x12) | 0;
out[oi++] = (y13 + x13) | 0;
out[oi++] = (y14 + x14) | 0;
out[oi++] = (y15 + x15) | 0;
}
function BlockMix(input, ii, out, oi, r) {
// The block B is r 128-byte chunks (which is equivalent of 2r 64-byte chunks)
let head = oi + 0;
let tail = oi + 16 * r;
for (let i = 0; i < 16; i++)
out[tail + i] = input[ii + (2 * r - 1) * 16 + i]; // X ← B[2r1]
for (let i = 0; i < r; i++, head += 16, ii += 16) {
// We write odd & even Yi at same time. Even: 0bXXXXX0 Odd: 0bXXXXX1
XorAndSalsa(out, tail, input, ii, out, head); // head[i] = Salsa(blockIn[2*i] ^ tail[i-1])
if (i > 0)
tail += 16; // First iteration overwrites tmp value in tail
XorAndSalsa(out, head, input, (ii += 16), out, tail); // tail[i] = Salsa(blockIn[2*i+1] ^ head[i])
}
}
// Common prologue and epilogue for sync/async functions
function scryptInit(password, salt, _opts) {
// Maxmem - 1GB+1KB by default
const opts = (0, utils_js_1.checkOpts)({
dkLen: 32,
asyncTick: 10,
maxmem: 1024 ** 3 + 1024,
}, _opts);
const { N, r, p, dkLen, asyncTick, maxmem, onProgress } = opts;
_assert_js_1.default.number(N);
_assert_js_1.default.number(r);
_assert_js_1.default.number(p);
_assert_js_1.default.number(dkLen);
_assert_js_1.default.number(asyncTick);
_assert_js_1.default.number(maxmem);
if (onProgress !== undefined && typeof onProgress !== 'function')
throw new Error('progressCb should be function');
const blockSize = 128 * r;
const blockSize32 = blockSize / 4;
if (N <= 1 || (N & (N - 1)) !== 0 || N >= 2 ** (blockSize / 8) || N > 2 ** 32) {
// NOTE: we limit N to be less than 2**32 because of 32 bit variant of Integrify function
// There is no JS engines that allows alocate more than 4GB per single Uint8Array for now, but can change in future.
throw new Error('Scrypt: N must be larger than 1, a power of 2, less than 2^(128 * r / 8) and less than 2^32');
}
if (p < 0 || p > ((2 ** 32 - 1) * 32) / blockSize) {
throw new Error('Scrypt: p must be a positive integer less than or equal to ((2^32 - 1) * 32) / (128 * r)');
}
if (dkLen < 0 || dkLen > (2 ** 32 - 1) * 32) {
throw new Error('Scrypt: dkLen should be positive integer less than or equal to (2^32 - 1) * 32');
}
const memUsed = blockSize * (N + p);
if (memUsed > maxmem) {
throw new Error(`Scrypt: parameters too large, ${memUsed} (128 * r * (N + p)) > ${maxmem} (maxmem)`);
}
// [B0...Bp1] ← PBKDF2HMAC-SHA256(Passphrase, Salt, 1, blockSize*ParallelizationFactor)
// Since it has only one iteration there is no reason to use async variant
const B = (0, pbkdf2_js_1.pbkdf2)(sha256_js_1.sha256, password, salt, { c: 1, dkLen: blockSize * p });
const B32 = (0, utils_js_1.u32)(B);
// Re-used between parallel iterations. Array(iterations) of B
const V = (0, utils_js_1.u32)(new Uint8Array(blockSize * N));
const tmp = (0, utils_js_1.u32)(new Uint8Array(blockSize));
let blockMixCb = () => { };
if (onProgress) {
const totalBlockMix = 2 * N * p;
// Invoke callback if progress changes from 10.01 to 10.02
// Allows to draw smooth progress bar on up to 8K screen
const callbackPer = Math.max(Math.floor(totalBlockMix / 10000), 1);
let blockMixCnt = 0;
blockMixCb = () => {
blockMixCnt++;
if (onProgress && (!(blockMixCnt % callbackPer) || blockMixCnt === totalBlockMix))
onProgress(blockMixCnt / totalBlockMix);
};
}
return { N, r, p, dkLen, blockSize32, V, B32, B, tmp, blockMixCb, asyncTick };
}
function scryptOutput(password, dkLen, B, V, tmp) {
const res = (0, pbkdf2_js_1.pbkdf2)(sha256_js_1.sha256, password, B, { c: 1, dkLen });
B.fill(0);
V.fill(0);
tmp.fill(0);
return res;
}
/**
* Scrypt KDF from RFC 7914.
* @param password - pass
* @param salt - salt
* @param opts - parameters
* - `N` is cpu/mem work factor (power of 2 e.g. 2**18)
* - `r` is block size (8 is common), fine-tunes sequential memory read size and performance
* - `p` is parallelization factor (1 is common)
* - `dkLen` is output key length in bytes e.g. 32.
* - `asyncTick` - (default: 10) max time in ms for which async function can block execution
* - `maxmem` - (default: `1024 ** 3 + 1024` aka 1GB+1KB). A limit that the app could use for scrypt
* - `onProgress` - callback function that would be executed for progress report
* @returns Derived key
*/
function scrypt(password, salt, opts) {
const { N, r, p, dkLen, blockSize32, V, B32, B, tmp, blockMixCb } = scryptInit(password, salt, opts);
for (let pi = 0; pi < p; pi++) {
const Pi = blockSize32 * pi;
for (let i = 0; i < blockSize32; i++)
V[i] = B32[Pi + i]; // V[0] = B[i]
for (let i = 0, pos = 0; i < N - 1; i++) {
BlockMix(V, pos, V, (pos += blockSize32), r); // V[i] = BlockMix(V[i-1]);
blockMixCb();
}
BlockMix(V, (N - 1) * blockSize32, B32, Pi, r); // Process last element
blockMixCb();
for (let i = 0; i < N; i++) {
// First u32 of the last 64-byte block (u32 is LE)
const j = B32[Pi + blockSize32 - 16] % N; // j = Integrify(X) % iterations
for (let k = 0; k < blockSize32; k++)
tmp[k] = B32[Pi + k] ^ V[j * blockSize32 + k]; // tmp = B ^ V[j]
BlockMix(tmp, 0, B32, Pi, r); // B = BlockMix(B ^ V[j])
blockMixCb();
}
}
return scryptOutput(password, dkLen, B, V, tmp);
}
exports.scrypt = scrypt;
/**
* Scrypt KDF from RFC 7914.
*/
async function scryptAsync(password, salt, opts) {
const { N, r, p, dkLen, blockSize32, V, B32, B, tmp, blockMixCb, asyncTick } = scryptInit(password, salt, opts);
for (let pi = 0; pi < p; pi++) {
const Pi = blockSize32 * pi;
for (let i = 0; i < blockSize32; i++)
V[i] = B32[Pi + i]; // V[0] = B[i]
let pos = 0;
await (0, utils_js_1.asyncLoop)(N - 1, asyncTick, (i) => {
BlockMix(V, pos, V, (pos += blockSize32), r); // V[i] = BlockMix(V[i-1]);
blockMixCb();
});
BlockMix(V, (N - 1) * blockSize32, B32, Pi, r); // Process last element
blockMixCb();
await (0, utils_js_1.asyncLoop)(N, asyncTick, (i) => {
// First u32 of the last 64-byte block (u32 is LE)
const j = B32[Pi + blockSize32 - 16] % N; // j = Integrify(X) % iterations
for (let k = 0; k < blockSize32; k++)
tmp[k] = B32[Pi + k] ^ V[j * blockSize32 + k]; // tmp = B ^ V[j]
BlockMix(tmp, 0, B32, Pi, r); // B = BlockMix(B ^ V[j])
blockMixCb();
});
}
return scryptOutput(password, dkLen, B, V, tmp);
}
exports.scryptAsync = scryptAsync;
//# sourceMappingURL=scrypt.js.map